Package | Description |
---|---|
org.neuroph.core |
Provides base classes and basic building components for neural networks.
|
org.neuroph.core.events |
Provides neural network learning events system
|
org.neuroph.nnet |
Provides out-of-the-box neural networks
|
org.neuroph.nnet.comp.layer |
Provides various specific layer types
|
org.neuroph.util |
Provides various utility classes for creating neural networks,
type codes, parsing vectors, etc.
|
org.neuroph.util.random |
Provides weights randomization techniques
|
Modifier and Type | Field and Description |
---|---|
protected Layer |
Neuron.parentLayer
Parent layer for this neuron
|
Modifier and Type | Method and Description |
---|---|
Layer |
NeuralNetwork.getLayerAt(int index)
Returns layer at specified index
|
Layer |
Neuron.getParentLayer()
Returns reference to parent layer for this neuron
|
Modifier and Type | Method and Description |
---|---|
List<Layer> |
NeuralNetwork.getLayers()
Returns layers array
|
Modifier and Type | Method and Description |
---|---|
void |
NeuralNetwork.addLayer(int index,
Layer layer)
Adds layer to specified index position in network
|
void |
NeuralNetwork.addLayer(Layer layer)
Adds layer to neural network
|
int |
NeuralNetwork.indexOf(Layer layer)
Returns index position of the specified layer
|
void |
NeuralNetwork.removeLayer(Layer layer)
Removes specified layer from network
|
void |
Neuron.setParentLayer(Layer parent)
Sets reference to parent layer for this neuron (layer in which the neuron
is located)
|
Constructor and Description |
---|
NeuralNetworkEvent(Layer source,
NeuralNetworkEvent.Type eventType) |
Modifier and Type | Method and Description |
---|---|
ConvolutionalNetwork.Builder |
ConvolutionalNetwork.Builder.withFullConnectedLayer(Layer layer) |
Modifier and Type | Class and Description |
---|---|
class |
CompetitiveLayer
Represents layer of competitive neurons, and provides methods for competition.
|
class |
ConvolutionalLayer
Convolutional layer is a special type of layer, used in convolutional neural
networks.
|
class |
FeatureMapLayer
FeatureMapLayer Layer provides 2D layout of the neurons in layer.
|
class |
FeatureMapsLayer
This class represents an array of feature maps which are 2 dimensional layers
(Layer2D instances) and it is base class for Convolution and Pooling layers,
which are used in ConvolutionalNetwork
|
class |
InputLayer
Represents a layer of input neurons - a typical neural network input layer
|
class |
InputMapsLayer
Input layer for convolutional networks
|
class |
PoolingLayer
Pooling layer is a special type of feature maps layer (FeatureMapsLayer)
which is used in convolutional networks.
|
Modifier and Type | Method and Description |
---|---|
static Layer |
LayerFactory.createLayer(int neuronsCount,
Class<? extends TransferFunction> transferFunctionClass) |
static Layer |
LayerFactory.createLayer(int neuronsCount,
NeuronProperties neuronProperties)
Creates and returns instance of Layer with specified number of neurons with specified properties
|
static Layer |
LayerFactory.createLayer(int neuronsCount,
TransferFunctionType transferFunctionType) |
static Layer |
LayerFactory.createLayer(List<NeuronProperties> neuronPropertiesVector) |
Modifier and Type | Method and Description |
---|---|
static void |
ConnectionFactory.createConnection(Neuron fromNeuron,
Layer toLayer)
Creates connectivity between specified neuron and all neurons in specified layer
|
static void |
ConnectionFactory.forwardConnect(Layer fromLayer,
Layer toLayer)
Creates forward connection pattern between specified layers
|
static void |
ConnectionFactory.forwardConnect(Layer fromLayer,
Layer toLayer,
double weightVal)
Creates forward connectivity pattern between the specified layers
|
static void |
ConnectionFactory.fullConnect(Layer layer)
Creates full connectivity within layer - each neuron with all other
within the same layer
|
static void |
ConnectionFactory.fullConnect(Layer layer,
double weightVal)
Creates full connectivity within layer - each neuron with all other
within the same layer with the specified weight values for all
conections.
|
static void |
ConnectionFactory.fullConnect(Layer layer,
double weightVal,
int delay)
Creates full connectivity within layer - each neuron with all other
within the same layer with the specified weight and delay values for all
conections.
|
static void |
ConnectionFactory.fullConnect(Layer fromLayer,
Layer toLayer)
Creates full connectivity between the two specified layers
|
static void |
ConnectionFactory.fullConnect(Layer fromLayer,
Layer toLayer,
boolean connectBiasNeuron)
Creates full connectivity between the two specified layers
|
static void |
ConnectionFactory.fullConnect(Layer fromLayer,
Layer toLayer,
double weightVal)
Creates full connectivity between two specified layers with specified
weight for all connections
|
Modifier and Type | Method and Description |
---|---|
protected void |
WeightsRandomizer.randomize(Layer layer)
Iterate and randomizes all neurons in specified layer
|
Copyright © 2019 Neuroph Project. All rights reserved.