Package | Description |
---|---|
org.neuroph.nnet |
Provides out-of-the-box neural networks
|
org.neuroph.nnet.comp |
Provides components for the specific neural network models.
|
org.neuroph.nnet.comp.layer |
Provides various specific layer types
|
Modifier and Type | Method and Description |
---|---|
ConvolutionalNetwork.Builder |
ConvolutionalNetwork.Builder.withConvolutionLayer(Dimension2D kernelDimension,
int numberOfMaps,
Class<? extends TransferFunction> transferFunction) |
Constructor and Description |
---|
Kernel(Dimension2D dimension)
Creates new kernel with specified width and height
|
Modifier and Type | Field and Description |
---|---|
protected Dimension2D |
FeatureMapsLayer.mapDimensions
Dimensions for all 2D layers (feature maps)
|
Modifier and Type | Method and Description |
---|---|
Dimension2D |
FeatureMapLayer.getDimensions()
Returns dimensions of this layer
|
Dimension2D |
FeatureMapsLayer.getMapDimensions()
Returns dimensions of feature maps in this layer
|
Modifier and Type | Method and Description |
---|---|
protected void |
FeatureMapsLayer.createFeatureMaps(int mapCount,
Dimension2D mapDimensions,
Dimension2D kernelDimension,
NeuronProperties neuronProperties)
Creates and adds specified number of feature maps to this layer
|
Constructor and Description |
---|
ConvolutionalLayer(FeatureMapsLayer fromLayer,
Dimension2D kernelDimension,
int numberOfMaps)
Creates convolutional layer with specified kernel, appropriate map
dimensions in regard to previous layer (fromLayer param) and specified
number of feature maps with default neuron settings for convolutional
layer.
|
ConvolutionalLayer(FeatureMapsLayer fromLayer,
Dimension2D kernelDimension,
int numberOfMaps,
Class<? extends TransferFunction> transferFunction)
Creates convolutional layer with specified kernel, appropriate map
dimensions in regard to previous layer (fromLayer param) and specified
number of feature maps with default neuron settings for convolutional
layer.
|
ConvolutionalLayer(FeatureMapsLayer fromLayer,
Dimension2D kernelDimension,
int numberOfMaps,
NeuronProperties neuronProp)
Creates convolutional layer with specified kernel, appropriate map
dimensions in regard to previous layer (fromLayer param) and specified
number of feature maps with given neuron properties.
|
FeatureMapLayer(Dimension2D dimensions,
Dimension2D kernelDimension)
Creates an empty 2D layer with specified dimensions and kernel
|
FeatureMapLayer(Dimension2D dimensions,
NeuronProperties neuronProperties)
Creates an empty 2D layer with specified dimensions
|
FeatureMapLayer(Dimension2D dimensions,
NeuronProperties neuronProperties,
Dimension2D kernelDimension)
Creates 2D layer with specified dimensions, filled with neurons with
specified properties
|
FeatureMapsLayer(Dimension2D mapDimensions)
Creates a new empty feature maps layer with specified kernel and
feature map dimensions.
|
FeatureMapsLayer(Dimension2D kernelDimension,
Dimension2D mapDimensions,
int mapCount,
NeuronProperties neuronProp)
Creates new feature maps layer with specified kernel and feature maps.
|
FeatureMapsLayer(Dimension2D mapDimensions,
int mapCount,
NeuronProperties neuronProp) |
InputMapsLayer(Dimension2D mapDimensions,
int mapCount)
Create InputMapsLayer with specified number of maps with specified dimensions
|
PoolingLayer(FeatureMapsLayer fromLayer,
Dimension2D kernelDim)
Creates pooling layer with specified kernel, appropriate map
dimensions in regard to previous layer (fromLayer param) and specified
number of feature maps with default neuron settings for pooling layer.
|
PoolingLayer(FeatureMapsLayer fromLayer,
Dimension2D kernelDim,
int numberOfMaps,
NeuronProperties neuronProp)
Creates pooling layer with specified kernel, appropriate map
dimensions in regard to previous layer (fromLayer param) and specified
number of feature maps with given neuron properties.
|
Copyright © 2019 Neuroph Project. All rights reserved.