public class SimulatedAnnealingLearning extends SupervisedLearning
| Modifier and Type | Field and Description |
|---|---|
protected double |
temperature
The current temperature.
|
maxError, previousEpochErrorcurrentIteration, learningRate, stopConditionslisteners, neuralNetwork, trainingSet| Constructor and Description |
|---|
SimulatedAnnealingLearning(NeuralNetwork network) |
SimulatedAnnealingLearning(NeuralNetwork network,
double startTemp,
double stopTemp,
int cycles)
Construct a simulated annleaing trainer for a feedforward neural network.
|
| Modifier and Type | Method and Description |
|---|---|
protected void |
calculateWeightChanges(double[] patternError)
Not used.
|
void |
doLearningEpoch(DataSet trainingSet)
Perform one simulated annealing epoch.
|
void |
doLearningEpoch(DataSet trainingSet,
double randomChance) |
NeuralNetwork |
getNetwork()
Get the best network from the training.
|
void |
randomize(double randomChance)
Randomize the weights and thresholds.
|
afterEpoch, beforeEpoch, doBatchWeightsUpdate, getErrorFunction, getMaxError, getMinErrorChange, getMinErrorChangeIterationsCount, getMinErrorChangeIterationsLimit, getPreviousEpochError, getTotalNetworkError, isBatchMode, learn, learn, learnPattern, onStart, setBatchMode, setErrorFunction, setMaxError, setMinErrorChange, setMinErrorChangeIterationsLimitdoOneLearningIteration, getCurrentIteration, getLearningRate, getMaxIterations, hasReachedStopCondition, isIterationsLimited, isPausedLearning, learn, learn, pause, resume, setLearningRate, setMaxIterationsaddListener, fireLearningEvent, getNeuralNetwork, getTrainingSet, isStopped, onStop, removeListener, setNeuralNetwork, setTrainingSet, stopLearningpublic SimulatedAnnealingLearning(NeuralNetwork network, double startTemp, double stopTemp, int cycles)
network - The neural network to be trained.startTemp - The starting temperature.stopTemp - The ending temperature.cycles - The number of cycles in a training iteration.public SimulatedAnnealingLearning(NeuralNetwork network)
public NeuralNetwork getNetwork()
public void randomize(double randomChance)
randomChance - public void doLearningEpoch(DataSet trainingSet)
doLearningEpoch in class SupervisedLearningtrainingSet - training set for training networkpublic void doLearningEpoch(DataSet trainingSet, double randomChance)
protected void calculateWeightChanges(double[] patternError)
calculateWeightChanges in class SupervisedLearningpatternError - output error vector for some network input (aka. patternError, network error)
usually the difference between desired and actual outputCopyright © 2019 Neuroph Project. All rights reserved.